Application 5.4
Defective Eigenvalues and Generalized Eigenvectors

The goal of this application is the solution of the linear systems like

\[\mathbf{x}' = \mathbf{A} \mathbf{x}, \tag{1} \]

where the coefficient matrix is the exotic 5-by-5 matrix

\[
\mathbf{A} = \begin{bmatrix}
-9 & 11 & -21 & 63 & -252 \\
70 & -69 & 141 & -421 & 1684 \\
-575 & 575 & -1149 & 3451 & -13801 \\
3891 & -3891 & 7782 & -23345 & 93365 \\
1024 & -1024 & 2048 & -6144 & 24572 \\
\end{bmatrix}
\tag{2}
\]

that is generated by the MATLAB command `gallery(5)`. What is so exotic about this particular matrix? Well, enter it in your calculator or computer system of choice, and then use appropriate commands to show that:

- First, the characteristic equation of \(\mathbf{A} \) reduces to \(\lambda^5 = 0 \), so \(\mathbf{A} \) has the single eigenvalue \(\lambda = 0 \) of multiplicity 5.

- Second, there is only a single eigenvector associated with this eigenvalue, which thus has defect 4.

To seek a chain of generalized eigenvectors, show that \(\mathbf{A}^4 \neq 0 \) but \(\mathbf{A}^5 = 0 \) (the 5×5 zero matrix). Hence any nonzero 5-vector \(\mathbf{u}_1 \) satisfies the equation

\[
(\mathbf{A} - \lambda \mathbf{I})^5 \mathbf{u}_1 = \mathbf{A}^5 \mathbf{u}_1 = 0.
\]

Calculate the vectors \(\mathbf{u}_2 = \mathbf{A} \mathbf{u}_1, \mathbf{u}_3 = \mathbf{A} \mathbf{u}_2, \mathbf{u}_4 = \mathbf{A} \mathbf{u}_3, \) and \(\mathbf{u}_5 = \mathbf{A} \mathbf{u}_4 \) in turn. You should find that \(\mathbf{u}_5 \) is nonzero, and is therefore (to within a constant multiple) the unique eigenvector \(\mathbf{v} \) of the matrix \(\mathbf{A} \). But can this eigenvector \(\mathbf{v} \) you find possibly be independent of your original choice of the starting vector \(\mathbf{u}_1 \neq 0 \)? Investigate this question by repeating the process with several different choices of \(\mathbf{u}_1 \).

Finally, having found a length 5 chain \(\{\mathbf{u}_5, \mathbf{u}_4, \mathbf{u}_3, \mathbf{u}_2, \mathbf{u}_1\} \) of generalized eigenvectors based on the (ordinary) eigenvector \(\mathbf{u}_5 \) associated with the single eigenvalue \(\lambda = 0 \) of the matrix \(\mathbf{A} \), write five linearly independent solutions of the 5-dimensional homogeneous linear system \(\mathbf{x}' = \mathbf{A} \mathbf{x} \).
In the sections that follow we illustrate appropriate Maple, Mathematica, and MATLAB techniques to analyze the 4×4 matrix

$$A = \begin{bmatrix}
35 & -12 & 4 & 30 \\
22 & -8 & 3 & 19 \\
-10 & 3 & 0 & -9 \\
-27 & 9 & -3 & -23
\end{bmatrix} \quad (3)$$

of Problem 31 in Section 5.4 of the text. You can use any of the other problems there (especially Problems 23–30 and 32) to practice these techniques.

Using Maple

First we enter the matrix in (3):

```maple
with(linalg):
A := matrix(4,4, [ 35, -12,  4,  30, 
22,  -8,  3,  19, 
-10,   3,  0,  -9, 
-27,   9, -3, -23 ]):
```

Then we explore its characteristic polynomial, eigenvalues, and eigenvectors:

$$\text{charpoly}(A, \lambda);$$

$$\lambda^4 - 4\lambda^3 + 6\lambda^2 - 4\lambda + 1$$

(that is, $(\lambda - 1)^4$)

$$\text{eigenvals}(A);$$

$$1, 1, 1, 1$$

$$\text{eigenvects}(A);$$

$$[[1,4,\{[0,1,3,0],[1,0,1,1]\}]]$$

Thus Maple finds only the two independent eigenvectors

$$w1 := \text{matrix}(4,1, [0, 1, 3, 0]);$$
$$w2 := \text{matrix}(4,1, [-1, 0, 1, 1]);$$

associated with the multiplicity 4 eigenvalue $\lambda = 1$, which therefore has defect 2. To explore the situation we set up the 4×4 identity matrix and the matrix $B = A - \lambda I$:
Id := diag(1,1,1,1):
L := 1:
B := evalm(A - L*Id):

When we calculate B^2 and B^3,

$B^2 := evalm(B &* B);
B^3 := evalm(B2 &* B);

we find that $B^2 \neq 0$ but $B^3 = 0$, so there should be a length 3 chain associated with $\lambda = 1$. Choosing

$u_1 := matrix(4,1,[1,0,0,0]);$

we calculate the further generalized eigenvectors

$u_2 := evalm(B &* u1);
u_3 := evalm(B &* u2);$

Thus we have found the length 3 chain $\{u_3, u_2, u_1\}$ based on the (ordinary) eigenvector u_3. (To reconcile this result with Maple's eigenvects calculation, you can check that $u_3 + 42w_2 = 7w_1$.) Consequently four linearly independent solutions of the system $x' = Ax$ are given by

$x_1(t) = w_1 e^t,$
$x_2(t) = u_2 e^t,$
$x_3(t) = (u_2 + u_3 t)e^t,$
$x_4(t) = (u_1 + u_2 t + \frac{1}{2} u_3 t^2)e^t.$
Using *Mathematica*

First we enter the matrix in (3):

\[
A = \begin{bmatrix}
35 & -12 & 4 & 30 \\
22 & -8 & 3 & 19 \\
-10 & 3 & 0 & -9 \\
-27 & 9 & -3 & -23
\end{bmatrix};
\]

Then we explore its characteristic polynomial, eigenvalues, and eigenvectors:

\[
\text{CharacteristicPolynomial}[A, r] = 1 - 4r + 6r^2 - 4r^3 + r^4
\]

(that is, \((r-1)^4\))

\[
\text{Eigenvalues}[A] = \{1, 1, 1, 1\}
\]

\[
\text{Eigenvectors}[A] = \{\{-3,-1,0,3\}, \{0,1,3,0\}, \{0,0,0,0\}, \{0,0,0,0\}\}
\]

Thus *Mathematica* finds only the two independent (nonzero) eigenvectors

\[
w_1 = \{-3,-1,0,3\};
w_2 = \{0,1,3,0\};
\]

associated with the multiplicity 4 eigenvalue \(\lambda = 1\), which therefore has defect 2. To explore the situation we set up the \(4 \times 4\) identity matrix and the matrix \(B = A - \lambda I\):

\[
\text{Id} = \text{DiagonalMatrix}[1,1,1,1];
\]
\[
L = 1;
\]
\[
B = A - L*\text{Id};
\]

When we calculate \(B^2\) and \(B^3\),

\[
B^2 = B.B
\]
\[
B^3 = B^2.B
\]

we find that \(B^2 \neq 0\) but \(B^3 = 0\), so there should be a length 3 chain associated with \(\lambda = 1\). Choosing

\[
u_1 = \{\{1\},\{0\},\{0\},\{0\}\}\]
we calculate

\[
\mathbf{u}_2 = \mathbf{B} \cdot \mathbf{u}_1 \\
\{\{34\}, \{22\}, \{-10\}, \{-27\}\}
\]

\[
\mathbf{u}_3 = \mathbf{B} \cdot \mathbf{u}_2 \\
\{\{42\}, \{7\}, \{-21\}, \{-42\}\}
\]

Thus we have found the length 3 chain \{\mathbf{u}_3, \mathbf{u}_2, \mathbf{u}_1\} based on the (ordinary) eigenvector \mathbf{u}_3. (To reconcile this result with Mathematica's Eigenvectors calculation, you can check that \mathbf{u}_3 + 14\mathbf{w}_1 = -7\mathbf{w}_2.) Consequently four linearly independent solutions of the system \(\mathbf{x}' = \mathbf{A} \mathbf{x}\) are given by

\[
x_1(t) = \mathbf{w}_1 e^t, \\
x_2(t) = \mathbf{u}_2 e^t, \\
x_3(t) = (\mathbf{u}_2 + \mathbf{u}_3 t) e^t, \\
x_4(t) = (\mathbf{u}_1 + \mathbf{u}_2 t + \frac{1}{2} \mathbf{u}_3 t^2) e^t.
\]

Using MATLAB

First we enter the matrix in (3):

\[
\mathbf{A} = \begin{bmatrix}
35 & -12 & 4 & 30 \\
22 & -8 & 3 & 19 \\
-10 & 3 & 0 & -9 \\
-27 & 9 & -3 & -23 \\
\end{bmatrix};
\]

Then we proceed to explore its characteristic polynomial, eigenvalues, and eigenvectors.

\[
\text{poly(A)} \\
\text{ans} =
\begin{bmatrix}
1.0000 & -4.0000 & 6.0000 & -4.0000 & 1.0000 \\
\end{bmatrix}
\]

These are the coefficients of the characteristic polynomial, which hence is \((\lambda - 1)^4\). Then

\[
[V, D] = \text{eigensys(A)} \\
V = \\
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
-1 & 3 \\
-1 & 0 \\
\end{bmatrix}
\]
\[D = \\
[1] \\
[1] \\
[1] \\
[1] \]

Thus MATLAB finds only the two independent eigenvectors
\[
\begin{align*}
w1 &= [1 \ 0 \ -1 \ -1]'; \\
w2 &= [0 \ 1 \ 3 \ 0]';
\end{align*}
\]

associated with the single multiplicity 4 eigenvalue \(\lambda = 1 \), which therefore has defect 2. To explore the situation we set up the \(4 \times 4 \) identity matrix and the matrix \(B = A - \lambda I \):
\[
\begin{align*}
Id &= \text{eye}(4); \\
B &= A - \lambda I; \\
\end{align*}
\]

When we calculate \(B^2 \) and \(B^3 \),
\[
\begin{align*}
B^2 &= B*B \\
B^3 &= B^2*B
\end{align*}
\]

We find that \(B^2 \neq 0 \) but \(B^3 = 0 \), so there should be a length 3 chain associated with the eigenvalue \(\lambda = 1 \). Choosing the first generalized eigenvector
\[
u1 = [1 \ 0 \ 0 \ 0]';
\]

we calculate the further generalized eigenvectors
\[
\begin{align*}
u2 &= B*u1 \\
u2 &= \begin{bmatrix} 34 \\
22 \\
-10 \\
-27 \\
\end{bmatrix}
\end{align*}
\]

and
\[
\begin{align*}
u3 &= B*u2 \\
u3 &= \begin{bmatrix} 42 \\
7 \\
-21 \\
-42 \\
\end{bmatrix}
\end{align*}
\]
Thus we have found the length 3 chain \(\{u_3, u_2, u_1\} \) based on the (ordinary) eigenvector \(u_3 \). (To reconcile this result with MATLAB’s \texttt{eigensys} calculation, you can check that \(u_3 - 42w_1 = 7w_2 \).) Consequently four linearly independent solutions of the system \(x' = Ax \) are given by

\[
\begin{align*}
x_1(t) &= w_1e^t, \\
x_2(t) &= u_3e^t, \\
x_3(t) &= (u_2 + u_1t)e^t, \\
x_4(t) &= (u_1 + u_2t + \frac{1}{2}u_3t^2)e^t.
\end{align*}
\]