ON CROSS-CULTURAL RESEARCH

Carol R. Ember and Melvin Ember
Cross-cultural researchers use information from different societies to try to arrive at general principles and general explanations. Their most important assumption is that comparison across cultures is possible, that across the wide diversity of cultures there are patterns of belief and behavior that are similar and explainable in similar ways. Why do cross-culturalists make this assumption? Mainly it is because we can predict much of the variation that has been observed cross-culturally. But our confidence that there are common explanations is also a matter of faith, which derives from our optimistic belief that even if social science has failed to find an explanation yet, it is only because we have not looked or thought hard enough yet.

In contrast, there are those who believe that cultures are so diverse and unique that they can only be described in their own terms. From this point of view, comparison is a waste of time because general explanations cannot be found. No general explanations are possible if there are no similarities across cultures. But cross-culturalists do not deny the uniqueness of each culture. Uniqueness and similarity are always present at the same time. What you see depends on how you look. If you focus on uniqueness, you may observe snowflakes and notice that each one has a unique structure; if you focus on similarity, you may observe that all snowflakes are roughly hexagonal and all melt when their temperature exceeds 32 degrees Fahrenheit at sea level.

Consider the following statements about sexuality in three different cultures:

1. The Mae Enga in the Western Highlands of Papua New Guinea believe that “…copulation is in itself detrimental to male well-being. Men believe that the vital fluid residing in a man’s skin makes it sound and handsome, a condition that determines and reflects his mental vigor and self-confidence. This fluid also manifests itself as his semen. Hence, every ejaculation depletes his vitality, and over-indulgence must dull his mind and leave his body permanently exhausted and withered.”

2. “The Nupe men [of Nigeria], certainly, make much of the physically weakening effects of sexual intercourse, and teach the younger generation to husband their strength....”

3. “…the milk avoidances of the Nilotes [Shilluk of the Sudan] are dependent on fear of contamination associated with the sexual act.... Only small boys herd the cattle and milk them, for once a boy has reached maturity there is the danger that he may have had sexual contact, when if he milked, or handled manure, or even walked among the cattle in their pens, he would cause them to become sterile....
If a man has had sexual relations with his wife or another he is considered unclean and does not drink milk until the sun has set the following day.3

Taken at face value, these three statements about male sexuality are each unique. Indeed, no statement about anything in a particular culture, sexuality or any other aspect of life, will be exactly like a corresponding statement about another culture. But there are also similarities in these statements that suggest a continuum of variation in regard to the degree to which males in a society believe that heterosexual sex is harmful to their health. It seems as if both Enga and Nupe males think that heterosexual sex is harmful. It is not so clear what Shilluk males think, because the statement quoted refers to harm to cattle and avoidance of milk, not to the health of males. But suppose we framed the question a different way and asked if people in a particular culture believed that heterosexuality (even with legitimate partners) brought some harm or danger. In regard to this question, we would say that all three of the cultures mentioned had such a belief. The important point here is that similarities cannot be seen until we think about variables (things or quantities that vary along some dimension). There is no right or wrong conceptualization; the researcher may choose to focus on any aspect of variation. But once researchers perceive similarity, they can perceive difference. Consider the following statements:

4. For the Cuna of Panama, “the sexual impulse is regarded as needing relief, particularly for males, and as an expression of one’s niga, a supernatural attribute manifested in potency and strength. On the other hand it is considered debilitating to have sexual relations too often, for this will weaken one’s niga.”4

5. Of the Bedouin of Kuwait, “It [sexual intercourse] is the one great pleasure common to rich and poor alike, and the one moment of forgetfulness in his daily round of troubles and hardships that Badawin [Bedouin] or townsmen can enjoy. Men and women equally love the act, which is said to keep man [sic] young, ‘just like riding a mare.’”5

The Bedouin beliefs contrast most sharply with the beliefs in the other cultures, because heterosexual intercourse appears to be viewed by them as purely pleasurable, with no negative associations. The Cuna seem somewhere in the middle. While they view sex as important, they appear to believe that too much is not good. Mixed beliefs are not a problem if the variable is conceptualized as a continuum with gradations. So, in a cross-cultural study con-
ducted by Carol R. Ember of a variable labeled as degree of men’s fear of sex with women, four scale points were identified: societies that had only negative statements about heterosexuality were considered high in men’s fear of sex with women, those that had an equal number of negative and positive statements were considered ambivalent, those that had mostly positive statements were considered relatively low in men’s fear of sex with women, and those with only positive statements were considered as lacking men’s fear of sex with women. While the variable at issue does not capture everything that might pertain to beliefs about heterosexuality (in all their uniqueness), it does capture some distinguishable similarities and differences across cultures.⁶

What Is the Question?

Once cross-cultural researchers identify the trait or pattern they are interested in predicting and explaining, they begin to ask a variety of questions about it.⁷ One is a descriptive question, dealing with the prevalence or frequency of a trait. How common is the belief that sex is dangerous to one’s health? What proportion of societies have it? A second kind of question deals with the causes of a trait or custom. The following are examples: Why do some societies have the belief that heterosexual sex is harmful? Why do some societies insist on monogamous marriage, whereas most allow polygyny (multiple wives)? Why is war very frequent in some societies and less frequent in others? A third kind of question deals with the consequences or effects of a particular trait or custom. This kind of question may be phrased broadly: What are the effects of growing up in a society with a great deal of war? Or a consequence question may be phrased much more specifically: What is the effect of polygyny on fertility? A fourth kind of question, which is not that different from the second or third types, is the relational question. Rather than hypothesizing about causes or consequences, a researcher may simply ask if a particular aspect of culture is associated with some other aspects. Is there a relationship between type of marriage and level of fertility? Is more war associated with more socialization of aggression in children?

Of the four types of questions, the causal or why question is the most challenging because such why questions rarely specify what the researcher needs to do. (Consequence questions may be equally
unspecific, but often particular possible effects are specified in advance.) The descriptive question tells the researcher what to count in a representative sample of societies. If you want to estimate the frequency of monogamy versus polygyny, then you need to establish what each society allows and make a count of each kind of society. The specific consequence and relational questions usually specify a set of concrete things to look at. If you want to know whether type of marriage has an effect on or is related to fertility, then you know you need to measure both variables. But a causal question or unspecific consequence question does not tell the researcher exactly where to look for causes and effects. It only specifies what scientists call the dependent variable (the variable to be explained in the causal question) or the independent variable (the variable that may have effects in the consequence question). Exactly which possible variables may be causes or effects is something the investigator has to decide on, often as suggested by some theory.

We like to think of the causal question as analogous to the format of a detective story. After a crime is committed the detective may know a lot about the crime, but not “whodunit” or why. Finding the solution usually entails hypothesizing about suspects and their possible motives and opportunities, eliminating the implausible possibilities, and concluding who is probably the culprit. Similarly, in science, the pursuit of causes involves the testing of alternative explanations or theories that specify why something is the way it is or how it came to be that way. The researcher who chooses to investigate a causal question needs to identify plausible explanations or theories that could be tested, and to decide on a strategy (for collecting and analyzing data) that could falsify or disconfirm explanations. Although these requirements may suggest that the researcher who searches for causes may need to act differently from other kinds of researchers, this is not really the case, as we shall see.

THE CROSS-CULTURAL RESEARCH STRATEGY

The basic strategy in testing any kind of cross-cultural relationship is the same, whether the relationship involves presumed causes, consequences, or just an association or correlation of an unspeci-
fied nature. To illustrate this, let’s consider what we ourselves did in a study designed to investigate why people in some societies go to war more often than in others.8 We started where most researchers do, looking to see what is suggested in the literature about warfare. One of the theories we decided to test is the idea that people fight when their populations begin to press on their supply of resources. According to this theory, when people do not have enough of a resource, they supposedly look to take it from those who do have enough. This idea about the possible link between war and resource problems (“population pressure”) has been discussed in anthropology mostly by ecological anthropologists such as Andrew P. Vayda and Roy Rappaport.9

Does this relationship hold true for most societies? We undertook a cross-cultural study to try to find out.10 Our first step was to reduce the idea that population pressure causes war to a simple relationship that should be true if the causal theory is correct. If it is, societies with greater population pressure should be more likely to engage in war (should have war more frequently) than societies with little or no population pressure. Notice that the prediction (or more formally the “hypothesis”) has almost the same form as the theory we stated above, but it differs in a fundamental way—the hypothesis simply predicts an association between variables (population pressure and war) but says nothing about causality. It merely says that the presumed cause and the presumed effect should generally co-occur. This is the fundamental assumption of cross-cultural research, but it is an assumption shared widely by researchers in other fields. Suppose we were testing the idea that smoking causes lung cancer. One hypothesis is that smokers, compared with nonsmokers, have a significantly higher rate of lung cancer. If smoking causes lung cancer, the two variables should be statistically associated. If they are not, we are obliged to be skeptical about a causal link between smoking and cancer. So, cross-cultural research is not very different from research in epidemiology, which looks for correlations between disease outcomes and predictors in an individual’s background or environment. Just as in epidemiology, however, research should not stop with the establishment of a correlation or association. Discovering a correlation is only the first step. Causal theories need also to be tested in other ways—experimentally, if possible, and by historical studies (looking at change over time)—to see if the presumed causes antedate the presumed effects. The testing for a correlation or association is an important first step because a test that reveals no significant cor-
relation means that the underlying theory probably has no predictive value. And if a theory is not predictive, it has no causal or explanatory value. Historical studies are much more difficult and time-consuming than correlational studies. So it is more efficient to test causal theories by first looking to see if the predicted nonhistorical associations truly exist.

To test for a correlation we have to find ways to measure the variables involved in objective and systematic ways. Most cross-culturalists use data collected by ethnographers to measure the variables in question. An ethnography is a descriptive account of the life of a group of people at a particular time and in a particular place. Usually the ethnographer is a trained anthropologist or other social scientist who uses a combination of methods to arrive at a picture of life in that community or society. In anthropology, participant observation and informal interviewing are almost always used; these methods of data collection may be supplemented by formal interviewing, testing, and systematic behavior observations. Almost always, the ethnographers writing cultural descriptions have not collected information with any cross-cultural comparison in mind. This means that they may or may not describe the information we are looking for and they may or may not use the methods that we deem the most suitable. In a very real sense, then, the ethnographic record limits the kinds of comparisons cross-culturalists can make. If ethnographers often describe what we are looking for, we can use ethnographic information to make cross-cultural tests. If there is little or no ethnography to use in a test, the theory will have to be tested in other ways. Later in this chapter we describe primary field comparisons in which researchers deliberately collect the information they need.

Designing measures that can be used to test theories is not that straightforward a process. Most theoretical variables are abstract constructs; researchers have to try to find a way to measure something that is observable. Let’s take the idea of population pressure. How can we measure population pressure on resources? As many anthropologists are aware, it is difficult to say exactly how many people could be supported in a particular territory because that depends mainly on the available technology. A society could increase the carrying capacity of its territory by improving its extractive and other technology. Population size may also depend on the weather. One year’s crop may be good, and the visiting ethnographer may think that there is no pressure on resources. But another year, if the weather is bad, many may starve. The availabili-
ity of resources can vary a lot from year to year. No one has yet devised an adequate measure of carrying capacity for one society, let alone for a cross-cultural sample. But we could know that a population has gone beyond its resources, without knowing how many people might be supported in that territory. According to Liebig’s law of the minimum, populations should adjust to the carrying capacity of their minimum years. If they have not, famines or serious food shortages should occur from time to time. For our study of war, we devised three different measures of resource (mainly food) scarcity. One was the amount of chronic or regularly occurring scarcity; the second was the number of reported famines in a twenty-five-year time period; and the third measure was the number of natural disasters that destroyed food supplies in a twenty-five-year time period. Coders were instructed to read the ethnographic materials on a particular culture and decide which of four ordered categories best fit that case on each of the three measures. Two coders separately read the ethnographic materials for each society, and we used only those societies for which the two coders’ scores did not differ much.

And how did we measure frequency of warfare? First, we needed to define warfare appropriately because war as we know it in the world of modern nation-states is very different from the warfare described in the ethnographic record. For one thing, most societies in the ethnographic record lacked specialized fighting forces and formal military leaders. Second, the wars were not usually organized on behalf of the entire society or even a major section thereof; in about 50 percent of the societies known to anthropology, the largest territorial unit involved in warfare was the village or other small community. So warfare as we defined it was any socially organized armed combat between members of different territorial units (communities or aggregates of communities). We asked our coders to read ethnographies and assess how often wars occurred in the society (or language group) according to a five-point ordinal scale ranging from less often than once every ten years to “constant” or occurring at any time of the year.

The reader may wonder why we did not use more precise measures of warfare. For example, why didn’t we use the exact number of months in a ten-year period that people were involved in warfare? The answer is that ethnographers rarely give us precise quantitative information on war frequency. They are more likely to say that war is rare or constant or occasional. If a scale is too precise, such that most cases cannot be measured, it is useless for...
cross-cultural comparison. But even imprecise scales can provide enough variation to allow us to find a relationship if one exists. Consider the relationship between height and weight. Of course we would want a researcher to use the best scale and the best ruler around. But imagine that you were in a place with neither a scale nor a ruler. You could line people up in order by height, so you would know who was the tallest and who was the shortest and the relative heights in-between. And you could probably rig up a see-saw or balance and use a set of stones to see how many “stones” people weighed. Chances are that even with such a crude measure you would find that taller people are generally heavier than shorter people. Researchers must sometimes be content with imprecise measures. A measure that rank-orders cases is better than no useable measure at all.

Cross-cultural researchers must also decide what societies to include in the sample. No one can examine all cultures; even if one could, the labor and time costs involved would not justify doing so. The most important operating principles in a scientific test of a hypothesis are: (1) to choose a sample that is representative of some universe of societies to which the researcher wants to generalize the results; and (2) to use a large enough sample so that the results are likely to be true for the larger universe of cases. As yet, there is no complete list of the world’s cultures from which to sample, so researchers could sample from one of the following published cross-cultural samples including (from largest to smallest): a computerized concordance containing lists of societies in eight different cross-cultural samples; the “full” Ethnographic Atlas; the “summary” Ethnographic Atlas; the World Ethnographic Sample; the Atlas of World Cultures; the Human Relations Area Files (HRAF) Collection of Ethnography; the Standard Ethnographic Sample; the Standard Cross-Cultural Sample; and the HRAF Probability Sample Files. Most of these samples contain bibliography (or pointers to bibliography) and some coded information on traits of interest to a variety of researchers. The HRAF Collection of Ethnography is different in that it contains no precoded data, but full texts indexed by subject matter and grouped by culture for the rapid retrieval of particular kinds of information. The important point about all of these lists is that they were not designed to support any researcher’s pet idea or theory. In contrast, a set of cases chosen from a researcher’s own personal library would be scientifically suspect.

What is a large enough sample? Statisticians have worked out formulas for calculating the size of the representative (random)
sample that is needed to obtain a significant result (one likely to be true). The samples needed are usually much smaller than you might imagine. If a relationship is strong, a random sample of twenty to thirty is sufficient. While most people assume that “bigger is better,” bigger samples require much more time and effort and expense—and they may not yield much more information or accuracy than a small random sample. Political opinion polls are a case in point. Samples of a few hundred to a few thousand people in the entire United States can often yield quite accurate predictions of elections.

TYPES OF CROSS-CULTURAL COMPARISON

The examples we have discussed so far are all from worldwide cross-cultural comparisons. But there are also other kinds of cross-cultural comparison. We can classify cross-cultural studies in terms of three dimensions: (1) whether the sample is worldwide or limited to a particular geographic area; (2) whether the comparison employs data collected by others (secondary data—e.g., from ethnographies, censuses, histories) or the data were collected in the field by the investigator (primary data); and (3) whether the data collected for each case were from the same (synchronic) time period or from two or more (diachronic) time periods. While eight combinations of these three dimensions are possible, diachronic comparisons of any kind are quite rare as yet.16 Worldwide cross-cultural comparisons using synchronic ethnographic information are the most common so far in anthropology. Some of the other social sciences compare across nations, which is a narrower type of cross-cultural comparison. Economists, sociologists, and political scientists also generally use secondary data when they study large samples of nations, but the data they use are not generally ethnographic; the measures are not based on cultural information collected by anthropologists or other investigators in the field. Rather, the data used in cross-national comparisons may be based on censuses and other statistics (crime rates, gross national product, etc.) or on historical documents. Cross-cultural psychologists are most likely to collect their own (primary) data, but their comparisons tend to be limited; often only two cultures are compared.
Before we turn to the advantages and disadvantages of the different types of comparison, let us first examine some of the other differences between cross-cultural and cross-national research. Cross-cultural research is broader in scope than cross-national research. The cross-national study compares countries, large populations that are politically unified. The cross-cultural study compares all types of society, from small hunter-gatherer societies with bands of fewer than seventy-five people and total populations in the hundreds to large societies dependent on intensive agriculture with cities and populations in the millions. As we noted earlier, about half of the societies known to anthropology had no political unification beyond the local community when they were first described, so many of the cultures studied by anthropologists are a lot smaller in scale than the countries studied in cross-national comparisons. The unit of study for an anthropologist is typically a population that lives in a contiguous geographical area and speaks a language not understood by its neighbors. (Anthropologists often call such a unit a society; its shared behaviors, beliefs, and values comprise its culture.) In contrast, the unit of analysis for a cross-national study is a politically defined country, which may be mostly one culture in the anthropological sense (e.g., Japan), or may include many different cultures. For example, Nigeria contains hundreds of cultures (e.g., Hausa, Yoruba, and Ibo). This is not to say that multicultural countries do not develop their own “national cultures,” sets of distinctive customs including an official or national language. Still, it is important to realize that the units in a cross-national comparison often consist of more than one society (and culture) in the anthropological sense.

ADVANTAGES AND DISADVANTAGES OF DIFFERENT TYPES OF COMPARISON

The major advantage of a worldwide comparison is its generalizability—a relationship found in such a comparison is likely to be applicable to the whole world. But when a researcher compares a lot of societies from different parts of the world, she or he is unlikely to know much about each society. If an explanation turns
out to be supported (that is, if the hunch seems to pay off), the lack of detailed knowledge may not be a problem. However, if the cross-cultural test is disconfirming, it may be difficult to come up with an alternative explanation without knowing much about the particular cases. Because most anthropologists have regional specialties, the regional comparativist is likely to know somewhat more about each society in a within-region comparison. Narrowing the scope of a study to a region may mean you know more about the cases, but such narrowing decreases the chance that the results will apply to the whole world. The findings of a regional comparison may or may not be generalizable to the rest of the world; the only way to find out is to conduct tests using data from other world regions. Of course, even a regional comparativist may not know all the cases in the region; that depends mostly on the size of the region. If the region is as large as North America, the comparativist is likely to know less about the cases than if the region is the American Southwest. Fred Eggan advocated small-scale regional comparisons, which he called “controlled comparisons,” because he thought they would make it easier to control on similarity in history, geography, and language. The presumption was that the researcher could then readily discern what accounts for some aspect of cultural variation within the region. However, similarity of cases within a region (in history, geography, language) may be a major drawback; if there is not sufficient variability in the aspect of culture the researcher is trying to explain (as well as in the presumed causes), it would be difficult or impossible to discern what the phenomena at issue may be related to. For example, suppose that almost all the cases in a region share beliefs about sexuality being somewhat harmful. It would be difficult or nearly impossible to be able to figure out what this belief is related to, because you could not tell which of the other regularly occurring practices or beliefs in the region might explain the sexual beliefs. Only if some of the cases lack what you are trying to explain might you see that the causes are generally absent when the effect is absent.

It may seem preferable to collect primary data (from a series of fieldwork sites) because the researcher then has control over how the raw data are collected. But the logistics of cross-cultural comparisons using primary data are formidable in time and expense. It is much more expensive to send fieldworkers to a series of sites than to retrieve and analyze data that have already been published—and it is difficult to maintain comparability across all the field sites. If a researcher has some confidence that the information needed is
already available in published form, comparisons using secondary data are much easier and cheaper than comparisons using primary data. A primary comparison, of course, is the only way to compare if the information needed is not available in the literature.

Why haven’t many diachronic studies been done yet? After all, if cross-culturalists are interested in cause and effect, it is important to know if the presumed causes preceded the effect. Perhaps the most important reason few such studies have been done is that diachronic data on a given case are not often easily available. Most societies studied by cultural anthropologists lacked native writing, and so there are usually no historical documents for earlier time periods. Reconstructions of prior time periods depend, then, upon oral history and the piecing together of occasional scattered documents from travelers, traders, missionaries, and other early visitors. In addition, while many cultures have been studied by different ethnographers at different times, ethnographers often have different substantive interests and their visits are unlikely to be neatly spaced out at regular intervals. It is no wonder, then, that most comparativists think it is more efficient to test causal theories first against synchronic data; if a theory has merit, the presumed causes and effects should generally be associated synchronically.20

THE VALIDITY OF CROSS-CULTURAL RESEARCH

Most cross-cultural research makes use of ethnography. Concern is often expressed about the quality of the data provided by ethnography and, therefore, the validity of cross-cultural studies that use ethnographic data. Some cross-culturalists, like George Peter Murdock, took the position that there is a great deal of “robustness” in the cross-cultural method. Murdock was not concerned with possible errors in ethnography because he thought they were uncommon and therefore unlikely to be threats to validity. In contrast, Raoul Naroll was quite concerned about possible errors in ethnography because he thought they were uncommon and therefore unlikely to be threats to validity. In contrast, Raoul Naroll was quite concerned about possible errors in ethnography and proposed data quality controls to test for systematic errors that might lead to the acceptance of false hypotheses.21 Since cross-culturalists cannot redo ethnography, Naroll proposed ways of analyzing the effects of data quality after the fact. He recommended that researchers rate the presumed quality of the
ethnography they were reading by taking note of such things as whether the ethnographer had a command of the native language, how much time was spent in the field, and so on. Then he recommended that researchers look to see if those data quality factors were significantly associated with the variables in the tested hypothesis. If they were, Naroll suggested that the data quality control factors be tested as alternative explanations of the results.

Research over the past thirty years suggests that Naroll was too worried about the possibility of errors in ethnography affecting the results of cross-cultural hypothesis tests. Of the many studies done by Naroll, his students, and others looking for data quality effects, very few have found that a data quality factor accounts for some result. Accordingly, some cross-culturalists now recommend testing only for those data quality factors which, according to strong reasoning, are likely to affect results. They also recommend that researchers develop a more direct coding of data quality that could be done while retrieving information from ethnographies to measure variables. For example, if a researcher is coding for sex ratio, a high score for data quality would be given to an estimate based on census data for a large population; estimates based on less quantified information would be given lower data quality scores. Researchers could then see if results were stronger (as they should be) using only the high quality data.

Another major reason some have for questioning cross-cultural findings is referred to as “Galton’s Problem.” In 1889, Francis Galton, in response to hearing a presentation of the first cross-cultural study (by Edward Tylor), suggested that many of Tylor’s “cases” were duplicates of one another because they had similar histories, and therefore his results were suspect because the sample was inflated. More recently, Raoul Naroll and his students have considered “Galton’s Problem” a serious threat to cross-cultural research. Naroll and others devised several methods to test for the possible effects of diffusion and historical relatedness. The concern behind these methods was that statistical associations could not be causal if they could be attributed mostly to diffusion (cultural borrowing) or common ancestry. Some cross-culturalists who were worried about Galton’s Problem tried to solve it by making sure that their samples contained only one culture from a particular culture area (an area of related languages and cultures).

How serious is Galton’s Problem? Cross-culturalists disagree. Most think it is a serious problem. Others like ourselves think not, because a random sample of cases is the best way to avoid sam-
pling bias. Also, the sample cases in most cross-cultural studies usually turn out to speak mutually unintelligible languages, which means that the speech communities involved have been separated for at least a thousand years. If two related languages began to diverge a thousand or more years ago, many other aspects of the cultures will also have diverged. Therefore, such cases could hardly be duplicates of each other.

Until recently, whether or not you worried about Galton’s Problem made a big difference in how you would do a study. Naroll’s tests for the possibility of diffusion were quite time-consuming to carry out; probably for this reason, most cross-culturalists altered their sampling strategy so as to eliminate multiple cases from the same culture area. Recently, however, mathematical anthropologists have developed statistical solutions and computer programs that treat the proximity of societies (in distance or language) as a variable whose influence can be tested in a multiple regression analysis. (This is called testing for spatial autocorrelation.) Whether or not a researcher agrees that Galton’s Problem is a problem, the recent mathematical and computer solutions do not require a special sampling strategy, nor do they require expensive, time-consuming controls. All you have to do, if you worry about Galton’s Problem, is test statistically for the possibility that proximity accounts for your results.

Cross-cultural researchers disagree about the seriousness of Galton’s Problem and how to deal with it. And of course they often disagree about causal interpretations. But with all their disagreement, they agree on the necessity of doing cross-cultural research in order to arrive at universal explanations. Only a cross-cultural test gives us the opportunity to discover that a theory or explanation does not fit the real world of cultural variation and therefore should be rejected.

NOTES

1. M. J. Meggitt, “Male-Female Relationships in the Highlands of Australian New Guinea,” American Anthropologist 66, no. 4, part 2 (1964): 210. Most ethnographers describe a culture as belonging to a particular time and place. Anthropologists refer to that time as the “ethnographic present.” Meggitt was describing the Mae Enga as of the 1950s.

6. Carol R. Ember, “Men’s Fear of Sex with Women: A Cross-Cultural Study,” *Sex Roles: A Journal of Research* 4 (1978): 657–678. This cross-cultural study tested four theories about why some cultures were high in men’s fear of sex with women. Note that women’s beliefs about men were not studied at the time because so few ethnographies reported women’s beliefs.

10. Our cross-cultural research did find support for the notion that population pressure makes war more likely. However, chronic pressure on resources did not seem to predict more war; the strongest predictor in our study (Ember and Ember, “Resource Unpredictability, Mistrust, and War”) was unpredictable shortages of resources caused by natural disasters. But our results suggested that people with a history of unpredictable disasters fought more or less constantly, not just when the disasters occurred or right after.

22. See the discussion of recommendations in Ember, Ross, Burton, and Bradley, “Problems of Measurement in Cross-Cultural Research Using Secondary Data.”

25. For some newer treatments of Galton’s Problem, see Burton and White, “Regional Comparisons, Replications, and Historical Network Analysis,” for references.

SUGGESTED READINGS

